| below before ente  | ring your candidate information |
|--------------------|---------------------------------|
|                    | Other names                     |
|                    |                                 |
| Number             |                                 |
|                    |                                 |
| el 3 GCE           |                                 |
| 023                |                                 |
| Paper reference    | 9MA0/31                         |
| sxsin <sub>v</sub> | ♦                               |
|                    |                                 |
|                    | 3                               |
|                    |                                 |
|                    | Co.                             |
|                    | Number el 3 GCE 023 Paper       |

Candidates may use any calculator allowed by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

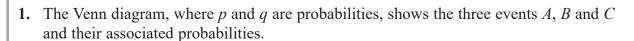
#### Instructions

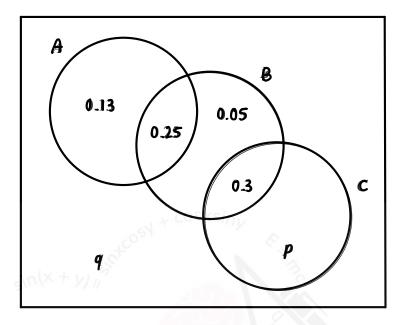
- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
- there may be more space than you need.
   You should show sufficient working to make your methods clear.
- Answers without working may not gain full credit. Values from statistical tables should be quoted in full. If a calculator is used instead of tables the value should be given to an equivalent degree of accuracy.
- Inexact answers should be given to three significant figures unless otherwise stated.

#### Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- The total mark for this part of the examination is 50. There are 6 questions.
- The marks for **each** question are shown in brackets
- use this as a guide as to how much time to spend on each question.

#### **Advice**


- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.


Turn over



P72819A ©2023 Pearson Education Ltd.

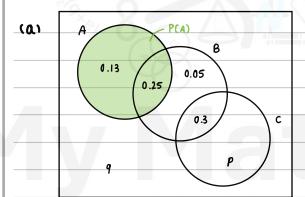






(a) Find P(A)

**(1)** 


The events *B* and *C* are independent.

(b) Find the value of p and the value of q

(3)

(c) Find P(A|B')

**(2)** 



P(A): "everything included in set A" P(A) = 0.13 + 0.25 = 0.38

P(A) = 0.38 B1

(b) "B and C are independent"

Formula for independent events:

#### $P(A) \times P(B) = P(A \cap B)$

$$P(B) = 0.6$$
 - Substitute:  $P(B) \times P(C) = 0.6(0.3+p)$   
 $P(C) = 0.3+p$  = 0.18+0.6p

$$P(B \cap C) = 0.3$$
  $P(B \cap C) = 0.3$ 

$$0.18 + 0.6 p = 0.3$$

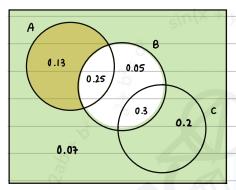
0.6p = 0.12

p=0.2 value of p A1





#### **Question 1 continued**


$$\sum$$
 probabilities =1

$$0.13 + 0.15 + 0.05 + 0.3 + p + q = 1$$

$$0.73 + 0.2 + 9 = 1$$

$$b(UVB, ) = \frac{b(VB, )}{b(VVB, )}$$





P(B') is everything <u>but</u> B→ shaded in green P(ANB') everything that's both A <u>and</u> not B → shaded in orange

$$P(B') = 0.13 + 0.2 + 0.07 = 0.4$$

Substitute 
$$\rightarrow$$
 P(A1B') =  $\frac{0.13}{0.4}$  =  $\frac{13}{40}$ 



(Total for Question 1 is 6 marks)



2. A machine fills packets with sweets and  $\frac{1}{7}$  of the packets also contain a prize.

The packets of sweets are placed in boxes before being delivered to shops. There are 40 packets of sweets in each box. Set number of trials

The random variable T represents the number of packets of sweets that contain a prize in each box.

(a) State a condition needed for T to be modelled by  $B(40, \frac{1}{7})$ 

(1)

A box is selected at random.

- (b) Using  $T \sim B(40, \frac{1}{7})$  find
  - (i) the probability that the box has exactly 6 packets containing a prize,
  - (ii) the probability that the box has fewer than 3 packets containing a prize.

(2)

Kamil's sweet shop buys 5 boxes of these sweets.

(c) Find the probability that exactly 2 of these 5 boxes have fewer than 3 packets containing a prize.

**(2)** 

Kamil claims that the proportion of packets containing a prize is less than  $\frac{1}{7}$ 

A random sample of 110 packets is taken and 9 packets contain a prize.

- (d) Use a suitable test to assess Kamil's claim. You should
  - state your hypotheses clearly
  - use a 5% level of significance

**(4)** 

(a) → Prizes must be placed in packets independently of eachother

The probability that a packet contains a prize must be constant

**B1** 

(b) T~ B(40, \frac{1}{3})

$$P(X=6)=0.17273 \longrightarrow 0.173 \text{ to 3sf}$$

ii. "fewer than"→ <

$$P(x < 3) = P(x \in 2) = 0.061583 \longrightarrow 0.0616$$
 to 3st B









Question 2 continued

(c) K -> number of boxes with less than 3 packets with a prize define variable

 $K \sim B(5, P(x < 3)) \longrightarrow K \sim B(5, 0.0616)$ 

he bought 5 boxes probability that less than 3 packets have a prize (from part (b)ii.)

 $P(K=2) = 0.031344 \longrightarrow 0.0313 \text{ to 3sf}$ 

( "exactly 2"

(d) <u>Hypotheses</u>  $X \sim B(110, \frac{1}{3})$  M

Ho:  $p = \frac{1}{3}$   $P(X \leqslant 9) = 0.038292 < 0.05 : falls in critical region so there is sufficient$ 

H<sub>1</sub>:  $p \leq \frac{1}{7}$  "9 samples contain a prize" evidence to reject H<sub>0</sub>. There is evidence

to support Kamil's claim Al



| Question 2 con | tinued                      |                 |
|----------------|-----------------------------|-----------------|
|                |                             |                 |
|                |                             |                 |
|                |                             |                 |
|                |                             |                 |
|                |                             |                 |
|                |                             |                 |
|                |                             |                 |
|                |                             |                 |
|                |                             |                 |
|                |                             |                 |
|                | (05)                        | ¢.              |
|                |                             |                 |
|                | sin(x + 1/1/2)              | 3               |
|                | 2016                        |                 |
|                |                             | / /             |
|                |                             |                 |
|                | do Tar                      |                 |
| 4              | $x = -b + \sqrt{b^2 - 4ac}$ | J. 71.%         |
| 2              | 20                          |                 |
| 7              |                             |                 |
| 4              | 9                           |                 |
|                |                             |                 |
|                |                             |                 |
| 9 (            |                             |                 |
|                |                             |                 |
|                |                             |                 |
|                |                             |                 |
|                |                             |                 |
|                | Maths                       |                 |
|                |                             | 5 <b>6</b> 10 1 |
|                |                             |                 |
|                |                             |                 |
|                |                             |                 |
|                |                             |                 |
|                |                             |                 |
|                |                             |                 |
|                |                             |                 |
|                |                             |                 |
|                |                             |                 |
|                |                             |                 |
|                |                             |                 |
|                |                             |                 |



|       | + cosxsin                        |
|-------|----------------------------------|
|       | 160 <sup>5</sup> N               |
|       | 3                                |
|       |                                  |
|       |                                  |
|       |                                  |
| 2     |                                  |
| ×     | $\times = -b + \sqrt{b^2 - 4ac}$ |
| 96:   |                                  |
| +     |                                  |
| io // |                                  |
| 9, (  | A A-0 ( )                        |
| 9     |                                  |
|       |                                  |
|       |                                  |
|       |                                  |
|       |                                  |
|       |                                  |
|       |                                  |
|       |                                  |
|       |                                  |
|       |                                  |
|       |                                  |
|       |                                  |
|       |                                  |
|       |                                  |
|       |                                  |





3. Ben is studying the Daily Total Rainfall, x mm, in Leeming for 1987

He used all the data from the large data set and summarised the information in the following table.

| x         | 0  | 0.1–0.5 | 0.6–1.0 | 1.1–1.9 | 2.0-4.0 | 4.1–6.9 | 7.0–12.0 | 12.1–20.9 | 21.0–32.0 | tr |
|-----------|----|---------|---------|---------|---------|---------|----------|-----------|-----------|----|
| Frequency | 55 | 18      | 18      | 21      | 17      | 9       | 9        | 6         | 2         | 29 |

(a) Explain how the data will need to be cleaned before Ben can start to calculate statistics such as the mean and standard deviation.

**(2)** 

Using all 184 of these values, Ben estimates  $\sum x = 390$  and  $\sum x^2 = 4336$ 

- (b) Calculate estimates for
  - (i) the mean Daily Total Rainfall,
  - (ii) the standard deviation of the Daily Total Rainfall.

(3)

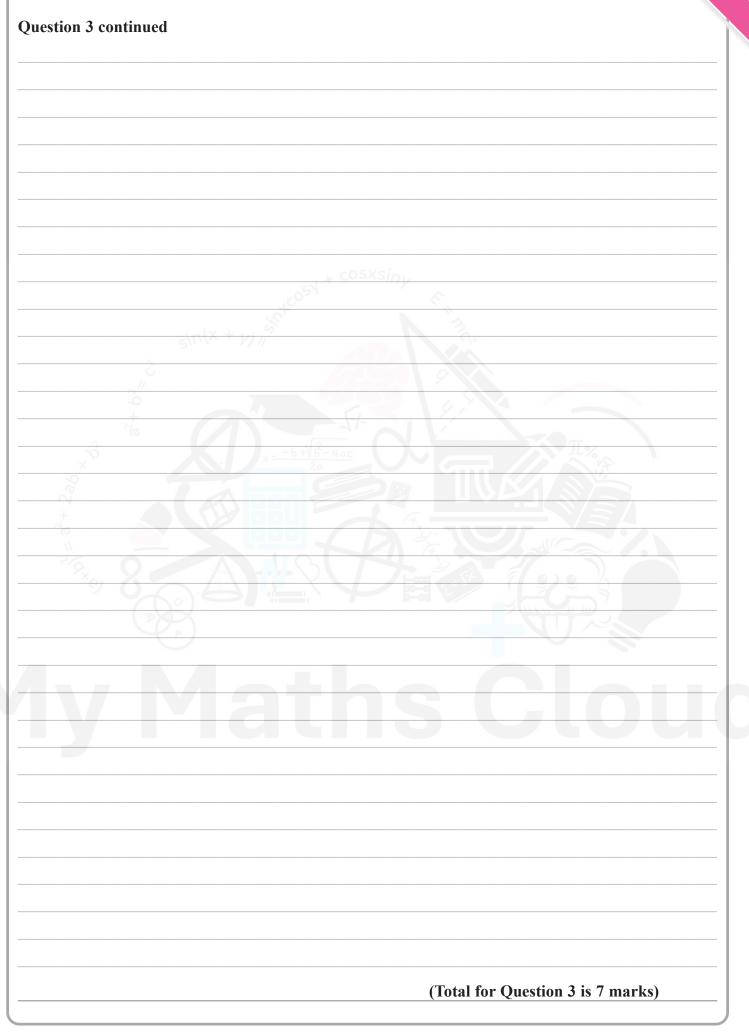
Ben suggests using the statistic calculated in part (b)(i) to estimate the annual mean Daily Total Rainfall in Leeming for 1987

- (c) Using your knowledge of the large data set,
  - (i) give a reason why these data would not be suitable,
  - (ii) state, giving a reason, how you would expect the estimate in part (b)(i) to differ from the actual annual mean Daily Total Rainfall in Leeming for 1987

**(2)** 

- (a) We need to replace "tr" (trace) with a numerical value, e.g. 0.025 (very small amount) M1A1
- (b) i. Formula for mean:

$$\overline{\chi} = \Sigma x$$


$$\bar{\chi} = \frac{390}{184} = 2.119 \longrightarrow 2.12 \text{ to 3sf.}$$

ii. Formula for SD:

$$\sigma = \sqrt{\frac{2x^2}{n} - (\frac{2x}{n})^2}$$
  $\sigma = \sqrt{\frac{4336}{184} - (\frac{390}{184})^2} = 4.367 \rightarrow 4.37 \text{ to 3sf A}$ 

- (c) i. The large data set only covers May-October 🔞
  - ii. The estimate would be <u>lower</u> than the actual since the winter months (which would have more rain) are missing. B)









- **4.** A study was made of adult men from region A of a country. It was found that their heights were normally distributed with a mean of 175.4cm and standard deviation 6.8 cm. or
  - (a) Find the proportion of these men that are taller than 180 cm.

**(1)** 

A student claimed that the mean height of adult men from region B of this country was different from the mean height of adult men from region A.

A random sample of 52 adult men from region B had a mean height of 177.2 cm

The student assumed that the standard deviation of heights of adult men was 6.8 cm both for region A and region B.

- (b) Use a suitable test to assess the student's claim. You should
  - state your hypotheses clearly
  - use a 5% level of significance

**(4)** 

(c) Find the *p*-value for the test in part (b)

**(1)** 

(a) A→ height from region A define variable

A~ N(175.4, 6.82)

P(A>180) = 0.24937 - 0.249 to 3sf

"taker than 180cm"

(b) B→ height from region B define variable

B~ N(175. 4, 6.82)

This part talks about "mean" : we will use B (sample mean) variable

Formula for Sample mean:

 $X \sim N(\mu, \sigma^2) \longrightarrow \overline{X} \sim N(\mu)$ 

enter Apply the formula.

 $B \sim N(175.4, 6.8) \longrightarrow \overline{B} \sim N(175.4, \frac{6.8}{52})$ 

0.025 each - 0.05 total!

Hypotheses P(B > 173.2) = 0.02814 > 0.025: does not fall in the critical region

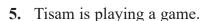
Ho: 4=175.4 B1 When you are given and there is insufficient evidence

H1: μ= 175.4 a value to test with in a two-tailed to reject Ho.

test, you compare it to to figure The claim is not supported A



out which toil to test. If it's > Ho, test


upper tail, if <Ho test lower tail!



10



|      | to multiply what we got for the upper tail in (b) by 2: |
|------|---------------------------------------------------------|
|      | 02814 = 0.05628                                         |
|      | that into a percentage! p= 5.6%. B1                     |
|      |                                                         |
|      |                                                         |
|      |                                                         |
|      |                                                         |
|      | cosxsiny                                                |
|      |                                                         |
|      | - sin(x + y) // 35                                      |
|      |                                                         |
|      |                                                         |
|      |                                                         |
| 9    | x=-b+\13-4ac                                            |
| 200  |                                                         |
| +    |                                                         |
| 70   |                                                         |
| 2/9x | Q A A A S                                               |
|      |                                                         |
|      |                                                         |
|      |                                                         |
|      |                                                         |
|      |                                                         |
|      |                                                         |
|      |                                                         |
|      |                                                         |
|      |                                                         |
|      |                                                         |
|      |                                                         |
|      |                                                         |
|      |                                                         |
|      |                                                         |



She uses a ball, a cup and a spinner.

The random variable X represents the number the spinner lands on when it is spun. The probability distribution of X is given in the following table

| x      | 20 | 50 | 80 | 100 |
|--------|----|----|----|-----|
| P(X=x) | а  | b  | С  | d   |

where a, b, c and d are probabilities.

To play the game

- the spinner is spun to obtain a value of x
- Tisam then stands xcm from the cup and tries to throw the ball into the cup

The event S represents the event that Tisam successfully throws the ball into the cup.

To model this game Tisam assumes that

- $P(S | \{X = x\}) = \frac{k}{x}$  where k is a constant
- $P(S \cap \{X = x\})$  should be the same whatever value of x is obtained from the spinner

Using Tisam's model,

(a) show that 
$$c = \frac{8}{5}b$$

(2)

(b) find the probability distribution of X

**(5)** 

Nav tries, a large number of times, to throw the ball into the cup from a distance of 100 cm.

He successfully gets the ball in the cup 30% of the time.

(c) State, giving a reason, why Tisam's model of this game is not suitable to describe Nav playing the game for all values of X

**(1)** 

(a) We can use the given "P(Sn {x = x}) is constant".

Use given "
$$P(S|\{x=x\}) = \frac{k}{x}$$
" to get  $P(s)$  in both cases: set up simultaneous equations!

P(S | { x = 50 } ) P(x = 5

$$P(S \cap \{x = 80\}) = \frac{k}{80} \times c = Q_2$$

Equate Q, and Q<sub>2</sub>:  $\frac{k}{80} \times c = \frac{k}{50} \times b$  Cancel L's

 $c = \frac{80}{50}b \longrightarrow \therefore c = \frac{8}{5}b \text{ hence shown} A1$ 



#### **Question 5 continued**

(b) to get the complete probability distribution of X we need to get a, b, c and d.

Use the same method as in (a) to get equations that all in terms of b.

for a: 
$$P(S \cap \{x = 20\}) = P(S \cap \{x = 80\})$$

$$\frac{\cancel{k}}{20} \times a = \frac{\cancel{k}}{50} \times b \qquad a = \frac{2}{5} \qquad M1A1$$

 $\frac{K}{20} \times a = \frac{K}{50} \times b$   $a = \frac{2}{5}b$  M1A1 - We know that  $\sum \text{probabilities} = 1 : a+b+c+d=1$ 

Swostitute the equations in terms of b we got for a, c and d:

for 
$$c: c = \frac{8}{5}b$$
 (from (a))

$$\frac{2}{5}b + b + \frac{8}{5}b + 2b = 1 \rightarrow 5b = 1 \therefore b = \frac{1}{5}$$
 M1A1

for d: 
$$P(S \cap \{x=100\}) = P(S \cap \{x=80\})$$

$$\frac{\cancel{k}}{100} \times d = \frac{\cancel{k}}{50} \times b \qquad d = \frac{\cancel{k}}{100} \times b$$

$$c = \frac{8}{5} \left(\frac{1}{5}\right) = \frac{8}{25}$$

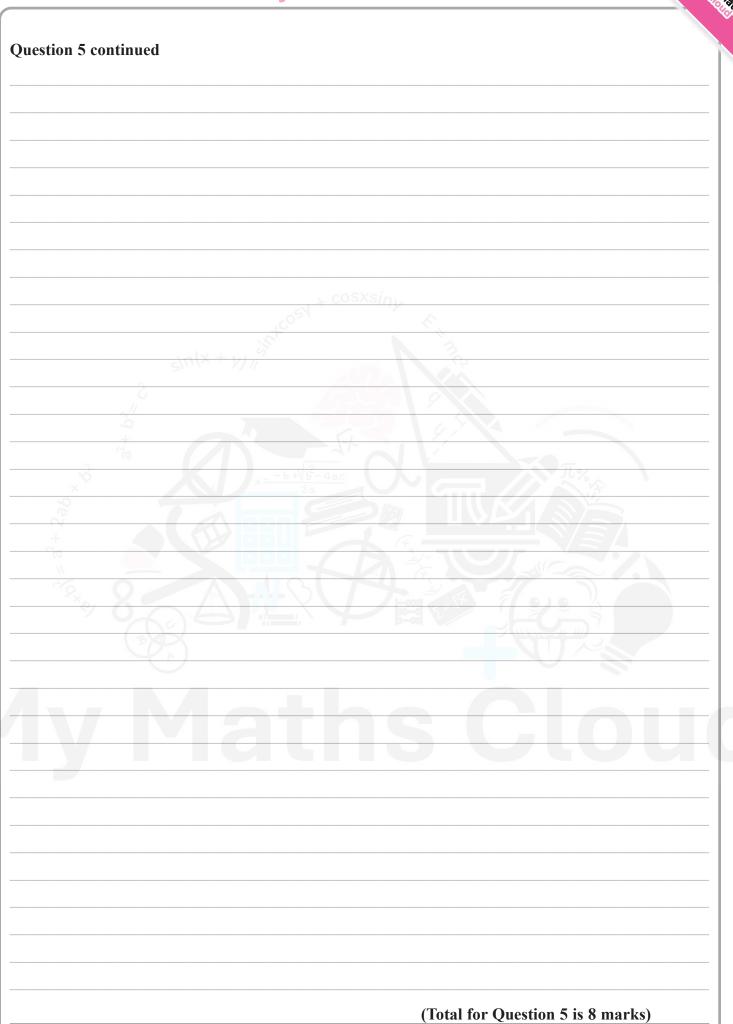
$$1 = 2(\frac{1}{5}) = \frac{2}{5}$$

#### .. Probability distribution X:

| x      | 20             | 50 | 80             | 100      |
|--------|----------------|----|----------------|----------|
| P(X=x) | <u>2</u><br>25 | 15 | <u>8</u><br>25 | <u>2</u> |

(c) From what we're told, we understand that

so as 
$$P(S+\{x=x\})=\frac{k}{x}$$
,  $0.3=\frac{k}{100} \rightarrow k=30$ 


With  $k=30 \rightarrow P(S|\{X=20\})=\frac{30}{20} \rightarrow p>1$  which is not possible as probabilities are always < 1.

So the model won't work. B1



| Outsetien 5 continued                       |
|---------------------------------------------|
| Question 5 continued                        |
|                                             |
|                                             |
|                                             |
|                                             |
|                                             |
|                                             |
|                                             |
|                                             |
|                                             |
|                                             |
| cosxsin <sub>y</sub>                        |
|                                             |
|                                             |
| sin(X + V) //                               |
|                                             |
|                                             |
|                                             |
| 6                                           |
| $\frac{3}{\sqrt{3}}$ $\frac{\pi}{\sqrt{3}}$ |
| × 20 20 20 20 20 20 20 20 20 20 20 20 20    |
|                                             |
|                                             |
|                                             |
|                                             |
|                                             |
|                                             |
|                                             |
|                                             |
|                                             |
| Aw Mathe Clou                               |
|                                             |
|                                             |
|                                             |
|                                             |
|                                             |
|                                             |
|                                             |
|                                             |
|                                             |
|                                             |
|                                             |
|                                             |
|                                             |
|                                             |









**6.** A medical researcher is studying the number of hours, *T*, a patient stays in hospital following a particular operation.

The histogram on the page opposite summarises the results for a random sample of 90 patients.

(a) Use the histogram to estimate P(10 < T < 30)

**(2)** 

For these 90 patients the time spent in hospital following the operation had

- a mean of 14.9 hours
- a standard deviation of 9.3 hours

normal

Tomas suggests that T can be modelled by  $N(14.9, 9.3^2)$ 

(b) With reference to the histogram, state, giving a reason, whether or not Tomas' model could be suitable.

**(1)** 

Xiang suggests that the frequency polygon based on this histogram could be modelled by a curve with equation

$$y = kxe^{-x}$$
  $0 \le x \le 4$ 

where

- x is measured in tens of hours
- k is a constant
- (c) Use algebraic integration to show that

$$\int_{0}^{n} x e^{-x} dx = 1 - (n+1)e^{-n}$$

**(4)** 

(d) Show that, for Xiang's model, k = 99 to the nearest integer.

(3)

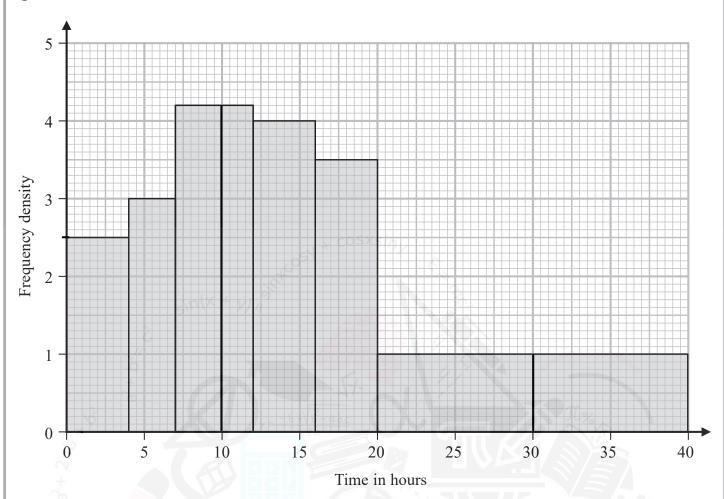
- (e) Estimate P(10 < T < 30) using
  - (i) Tomas' model of  $T \sim N(14.9, 9.3^2)$

(1)

(ii) Xiang's curve with equation  $y = 99xe^{-x}$  and the answer to part (c)

**(2)** 

The researcher decides to use Xiang's curve to model P(a < T < b)


(f) State one limitation of Xiang's model.

**(1)** 





#### **Question 6 continued**



(a) We need to get the total area of the bars.

$$0 \rightarrow 4$$
:  $4 \times 2.5 = 10$  : total area:

$$4 \rightarrow 7: 3 \times 3 = 9$$

Now let's find the area P(10< T < 30):

$$10 \rightarrow 11 : 4.2 \times 2 = 8.4$$

hence 
$$P(10 < T < 30) = \frac{48.1}{90} = \frac{12.1}{225} = 0.53777... \longrightarrow 0.538 \text{ to 3sf}$$
 A1

(b) It's not suitable as the data are not symmetric. (Remember the normal distribution is

a symmetric bell-shaped curve)



# 4.4.

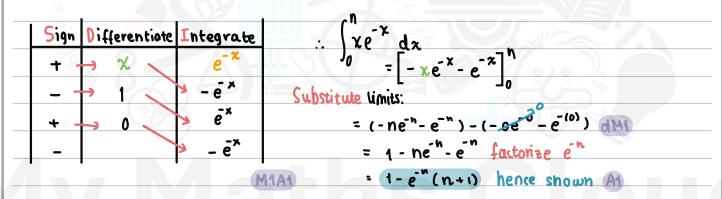
#### **Question 6 continued**

$$\int_{0}^{n} xe^{-x} dx \qquad \text{we see this is a multiplication,}$$

$$\therefore \text{ we have to use Integration by larts.}$$

\* Integration by Parts:

= 
$$x(-e^{-x}) - \int (1)(-e^{-x})dx$$
 M1A1


$$= -xe^{-x} + e^{-x} dx$$

$$= \left[ -xe^{-x} - e^{-x} \right]^n$$
Substitute limits: 
$$= (-ne^{-n} - e^{-n}) - (-se^{-x} - e^{-(s)}) dM1$$

$$= 1 - ne^{-n} - e^{-n} factorize e^{-n}$$

$$= 1 - e^{-n} (n+1) hence shown M$$

#### Method 2 SDI table



(d)

$$k \int_{0}^{4} xe^{-x} dx = 90 \text{ since the area we calculated above is } 90.$$

$$k \left(1 - e^{-4} \left(4 + 1\right)\right) = 90 \text{ Solve for } t \text{ M1}$$

$$k \left(1 - 5e^{-4}\right) = 90$$

$$k = \frac{90}{\left(1 - 5e^{-4}\right)} = 90 \text{ Solve for } t \text{ K} = 99 \text{ shown A1}$$





#### **Question 6 continued**

(e) i. 
$$P(10 < T < 30) = 0.64863 \longrightarrow 0.649$$
 to 3sf B1

$$\frac{\text{Probability} = \frac{53.1...}{90} = 0.59027 \longrightarrow 0.590 \text{ to 3sf}}{90}$$

(f) The patients may stay longer than 40h. B)



| ion 6 continued                                    |                                    |
|----------------------------------------------------|------------------------------------|
|                                                    |                                    |
|                                                    |                                    |
|                                                    |                                    |
|                                                    |                                    |
|                                                    |                                    |
|                                                    |                                    |
|                                                    |                                    |
|                                                    | . cosxsi <sub>ni.</sub>            |
| COSY *                                             | . COSASIM <sub>Y</sub>             |
| in's                                               |                                    |
| sin(x + y) //                                      | 2000                               |
| 2//                                                | 5-42 9                             |
| + 9                                                |                                    |
| 2 %                                                |                                    |
| $\times$ $\times = \frac{-b + \sqrt{b^2 - a}}{2a}$ | 4ac                                |
| 3 7 1 5                                            |                                    |
| + (12) 6611 5                                      |                                    |
|                                                    |                                    |
| 19x, 9 1                                           |                                    |
|                                                    |                                    |
|                                                    |                                    |
|                                                    |                                    |
| Wat                                                |                                    |
| <del>V -                                   </del>  |                                    |
|                                                    |                                    |
|                                                    |                                    |
|                                                    |                                    |
|                                                    |                                    |
|                                                    |                                    |
|                                                    |                                    |
|                                                    |                                    |
|                                                    | (Total for Question 6 is 14 marks) |
|                                                    | TOTAL FOR STATISTICS IS 50 MARKS   |
|                                                    | IOTAL FOR STATISTICS IS 30 MAKKS   |

